GLFE Real-Time TAMDAR Impact Experiments with the 20km RUC September 2005 report

Bill Moninger, Stan Benjamin,
Tracy Lorraine Smith, Barry Schwartz,
Brian Jamison

(NOAA Forecast Systems Laboratory)
NOAA / ESRL / GSD ←New Name!
Boulder, CO

Outline of Talk

- General description of RUC 1h cycle
- TAMDAR error characteristics as revealed by the RUC
- Description of RUC parallel experiments
 - "dev" without TAMDAR
 - "dev2" with TAMDAR
- Skill results

Purpose for Rapid Update Cycle (RUC) model run operationally at NCEP

- Provide high-frequency mesoscale analyses, short-range model forecasts
- Use all available observations
- Users:
 - aviation/transportation
 - severe weather forecasting
 - general public forecasting
- Focus on 1-12 hour forecast range

Aviation Forecast Guidance from the Rapid Update Cycle (RUC)

Better weather products require improved high-frequency high-resolution models with high-refresh data to feed them

RUC Hourly Assimilation Cycle

Observations used in RUC

~Number	Freq.	
80	/12h	_
30	/ 1h	
110-130	/ 1h	<u>д</u> <u>с</u>
1400-4500	/ 1h	<u> </u>
1500-1700	/ 1h	
100-150	/ 1h	
1500-3000	/ 1h	
1000-2500	/ 1h	
~10km res	/ 1h	
1000-4000	/ 6h	-
~300	/ 1h	ţ
~5000	/ 1h	{
		S
~20	/ 1h	
4 km re	S	>
	80 30 110-130 1400-4500 1500-1700 1000-150 1500-3000 1000-2500 ~10km res 1000-4000 ~300 ~5000	80 /12h 30 /1h 110-130 /1h 1400-4500 /1h 1500-1700 /1h 100-150 /1h 1500-3000 /1h 1000-2500 /1h ~10km res /1h 1000-4000 /6h ~300 /1h ~5000 /1h

RUC Wind forecast Accuracy

-Sept-Dec 2002

Verification against rawinsonde data over RUC domain RMS vector difference (forecast vs. obs)

RUC is able to use recent obs to improve forecast skill down to 1-h projection for winds

Results from Fall 2002

We use the RUC to investigate TAMDAR Error Characteristics

Most of the following plots show:

- Data from 1 17 Aug 2005
- Differences between ob and dev2 RUC
 - (ob minus model)
 - for data passing RUC QC (and not on reject list)
 - (we reject about 2% of TAMDAR Temperature obs)
 - (we reject about 10% of TAMDAR Wind and RH obs)
- To facilitate comparison with other airlines:
 - No data between 0300 and 1200 UTC
 - Only data in the TAMDAR region
 - lat between 37°N and 49°N
 - Ion between 75°W and 101°W
- "Other" is all airlines except
 - TAMDAR and CN-D8

Temperature

TAMDAR Relative Humidity Bias Reflects T bias

Vector obs-RUC Wind difference (m/s)

Summary of TAMDAR Error Characteristics

TAMDAR Temperatures are generally good

 however, ascents have a warm bias, descents have a cool bias

TAMDAR RH errors

reflect the temperature bias

TAMDAR winds are more troublesome

- substantial errors on descent, possibly due to maneuvers
- errors on ascent are greater than other fleets

Real-time TAMDAR RUC impact experiment design

- Parallel 20km RUC 1-h cycles run in real time
 - "dev" cycle no TAMDAR
 - "dev2" cycle dev + TAMDAR data
 - Lateral boundary conditions same for dev and dev2
- Ensure runs are "parallel"
 - Initialize dev and dev2 runs at exact same time
 - Reset dev and dev2 background fields every 49 h
- The following skill results show differences in dev and dev2 skill
 - each verified against RAOBS

Verification regions for FSL-RUC TAMDAR impact

Large region (eastern half of US) -- 38 RAOB sites

Small region (Great Lakes) includes 14 RAOBs

TAMDAR evaluation phases

Phase 1 – 9 Feb – 21 April 2005

Winter/early spring – lower vertical resolution

Phase 2 – 22 April – 1 June

Spring – higher vertical resolution

Phase 3 – 2 June – 22 July

Summer – higher vertical resolution

Phase 4 – 23 July – 24 August

Summer – lower vertical resolution

TAMDAR evaluation w/ RUC parallel cycles

- Summary evaluation over each of 4 phases
- Screened out any dates with questionable results
 - If logs showed missing 1h RUC runs for either dev or dev2 cycles
 - If dev/dev2 verification stat differences over full national domain for winds > 0.2 m/s averaged over 8 mandatory levels
- Results only shown for 00z verification, Gt. Lakes region.
 - Less impact for 12z verif and/or E.US region

FSL-RUC TAMDAR impact experiment considerations

- Impact experiments must be conducted such as to show value added to other existing observations
 - RUC well-suited for this because it includes a large set of available observations
- The Real-time parallel cycles at FSL (dev/dev2) provide well-controlled experiments and results
 - Accelerated evaluation process

850 mb temp - clear improvement in the small (Gt. Lakes) region (in April)

Temperature improvement continues in Phase 3-4

Temperature error summary Positive → positive impact from TAMDAR data

(decrease in Phase 3-4 likely due to climatology)

Temperature: some improvement for 700 mb, 3-h forecast (in April)

TEMP - 700 mb (More improvement in Phase 3-4)

Relative Humidity: not much difference (in April)

2005-06

2005-07

10 15 20 25

2005-08

Phase 3-4 – Jun-Aug 05

RH

-- Now: 12% Reduction of 3h fcst err at 850 mb

(Negative impact at 700 - 500 mb is being investigated)

Winds: not much difference (in April)

tamdar dev large 850mb winds rms 3h forecast valid at 0 UTC (7 day avg) tamdar_dev2_large 850mb winds rms 3h fore cast valid at 0 UTC (7 day avg) ─□ tamdar dev2 large 850mb winds rms 3h fore cast valid at 0 UTC 📥 tamdar_dev_large 850mb winds rms 3h forecast valid at 0 UTC 3 0 10 9 (m s-1) ത് mi. 0 9 30 05 15 20 25 05 15 20 25 30 05 2005-01 2005-02 2005-04 2005-03

WIND – averaged over 850-500 mb

FSL-RUC TAMDAR impact experiment results as of September 2005

- Results (TAMDAR impact) have improved during continued TAMDAR shakedown phase
- Temperature impact:
 - strongest at 850 mb
 - ~15-20% reduction of 3h forecast error
 - Less positive impact at 700-500 mb
- RH Impact:
 - Positive at 850 mb
 - ~12% reduction of 3h forecast error
 - Negative impact at 700-500 mb
- Higher vertical resolution yields
 - better Temperature and RH impact

FSL-RUC TAMDAR impact experiment results as of September 2005 (continued)

Wind impact:

- Variable in 850-700-500mb layers
- average ~10% reduction of 3h forecast error

Diurnal variations:

more 3h impact at 00z than 12z

Results should improve more with:

- Further improvements in TAMDAR data accuracy
- Implementation of more flexible reject lists
- More restrictive quality control
- Better treatment of RH assimilation (RUC13 version)